

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTMENT IN YOUR FUTURE

Use of Finite Element Analysis Data in Fatigue Analyses

Jan Papuga

The organisation of the meeting is partially financed from OPPI programme Czech Technology Airspace Platform, reg. number SPTP 01/004

Software PragTic

- Started as a support tool for preparation of my PhD thesis
- Present focus: research tool usable for fatigue computation
- Freeware (<u>www.pragtic.com</u>)
- MS Windows based
- English interface only
- v.0.2beta v.0.2betaD
 - development sponsored
 - by Evektor

Prague

- Previous versions sponsored by CTU in
- PragTic paka46v - 0 × <u>File Material Run Iools Help</u> FE Model WARNING: No removal - some another entity is dependant -Geometry Invalid arguments F Nodes F Elements Node 2744 position CNTR: FE Properties SIG X: 1151,606 TAU YZ: 37,66647 FEA Sets SIG Y: 759,2522 TAU XZ: -19,2352 FEA Results SIG Z: 188,8209 TAU XY: -379,9677 El Isolated Points 1st principal stress: 1384,13748080184 2nd principal stress: 529,243201551838 Description 3rd principal stress: 186,29841764632 Sets Results E Properties COORDSYS LOCPROP MATERIAL 🖻 Fatigue Analysis E Loading Time Scales Load Sequencies E Load Spectra + Load Regimes Calculation Methods Fatigue Damage

PragTic Features

- Works on data
 - of FE-model
 - at isolated points with no relation to any FE-model (strain gauges)
- Own database of all data processed
- Preparation and analysis of loading by more load channels
- Easy to use graphical interface
- Complex setup of calculation methods
- Unique coverage of multiaxial methods
- Approx. 20 high-cycle and 10 low-cycle fatigue computation methods

Fatigue Calculation on FE-Model

Essentials

FEM-Model Requirements

- Adequately detailed mesh around the critical localities
- Use the submodel of the critical place if available
- Some rough rules:
 - A quarter of circle ~ 5 elements
 - Avoid linear tetrahedrons
 - At least three elements over the thickness, otherwise shells

Woehlerovy křivky

Počet kmitů N [-]

Load	Decre	ase of fatigue lif	е
increase	ČSN 41 1523.1	AISI 4340	7175-T37511
0%	100%	100%	100%
2%	66%	67%	82%
5%	36%	38%	62%
10%	13%	17%	39%

Use of Result Data – Part I

- Results can be printout at
 - nodes of elements
 - can be significantly discontinuous (coarse meshes)
 - the measure of conservativeness can be doubtful
 - integration points
 - the only "exact" values
 - nodes as averaged value
 - smooth in comparison to nodes of elements
 - the same results on edges
 - element centroids
 - used e.g. in FemFat on shell elements and welds (the load values on edges are not decisive – structural stresses)

- more points to be analyzed
- much slower calculation

Use of Result Data – Part II

Shell elements

- obvious demand by the most of industrial partners (automotive, airplane, transport, etc. industry)
- further complication as regards listing results on top and bottom sides
- questionable results at typical crack initiation areas junctions, toes, etc.
 - these localities are moreover often affected by welds
 - use of results at element centroids should be preferred

Bar elements?

- does the computation make sense?
- description of potential notches on elements close to zero (if not input e.g. in the fatigue post-processor)
- notches at junctions are not described in acceptable detail

Data Import to PragTic

FE-data

- commonly formatted (rows & columns) ASCII file (solid elements only)
- MSC.Nastran (*.nas/*.dat files topology, *.pch FE-results)
- ABAQUS (ASCII file *.fil) suspended at present (is there anybody to sponsor it?)
- Isolated points
 - direct input through the PragTic's interface expected
 - possibility to import as a commonly formatted ASCII file
- Other entities
 - load regimes, calculation methods possibility to read data from other PragTic's tasks

Example of ANSYS Input

File recognition

Source: CADocumen

igs\Honza\Dokumentv\textv

Operations done in points 1-6 can be saved and read during any future import on a similar data structure

FE-Model Description

Topology data ■ Node description (ID, coordinates) Element description Related material Related element group Related real constants Related coordinate systems (definition, output) ■ Related nodes (element table of incidencies) Result data

Data Structure of Tasks in PragTic

hard-disc representation

- *.fdb file with description of the task (data_base)
- directory * (the same name as the task) full with binary files of individual items in the data_base (data_vectors)
- each file consists of data of uniform type and length
- memory representation
 - data_base specialized data_vector describing complete content of the task
 - data_vector
 - class build around the data read from files
 - data are cached, read only their part, not the whole file

PragTic interface representation

Interface II – Popup Menu

When complete:

New View On Set... Edit Import Remove Delete ASCII Export Neutral File Export Average To Nodes Scale By Ansys Export Opened by a click on the right mouse button

Differs for various selected items

Remove command

 removes the data_vector from the task, but leaves the file representation on the harddisc

Delete command

■ removes also the file

Note: Some data_vector serve as a synergic part of another data_vector – you will be warned that the delete/removal is forbidden

Interface III

Data Items Differentiation

- Each data_vector has a header at its beginning, where are among others data on:
 - Its meaning (e.g. Stress, Strain, Nodes, etc.)
 - Related location (e.g. variable described at element centroids)
 - Number of items, dimension of one item
 - Related sets (e.g. nodal)

View / Edit Window – Type I

- Description of elements, nodes, isolated points, sets, results, loads
- Use of clipboard enabled
 - Ctrl+C (or the command from the right-hand click menu) for View mode
 - Ctrl+V (or the command from the right-hand click menu) for Edit mode
- Fast ASCII Copy copies whole content of the table to a file, using the tabulators and enters as separators
- **Filter** see its strength on the next slide

🔁 View F	☞ View RE5_CRC180 Item										
Item:	RES_CRC180	Dsc:	RES: Transier	nt S-E Tensor Pair					7	On set: NRES	5_CRC180
Location	n: at nodes	•							١	ime scale: TRES	_CRC180
Line	Node	Position	Time	SX	SY	SZ		SYZ	SXZ	SXY	EX 🔺
1/1	166	CNTR	158	0,00272876	-0,492274	-2,148	2	171 209	-1,30547	0,0425088	2,18529E-5
1/2	166	CNTR	162	0,0061568	-0,486222	33,0	<u>Cor</u> y To Clipboard	-1,27011	0,0387773	-2,66926E-5	
1/3	166	CNTR	166	0,00628214	-0,490158	67,0	Shov	v in another CS	-1,13945	0,0388644	-7,20206E-5 🖵
									-		Þ
Fast <u>A</u>	SCII Copy	<u>F</u> ilter		Note the hints			Close <u>H</u> elp				e <u>H</u> elp
SZ - Stress	; ZZ										11.

View / Edit Window – Type I **Filter**

- Filtering can be used in a consecutive series
- Leaves of

🚭 View RES_CRC180 Item

12

16

26

Fast ASCII Copy...

Location: at nodes

Item:

Line

1

2

3

4

RES CRC180

LineAbs Node

166

166

166

Filter.

- belong
- \blacksquare with s chose

niy dz	ita		Ð	Filter on RES_CRC180							
ng to	specifi	ied set	-	Method O Use sets • At column: SX		Selection type O Individual items Maximum - minimum					
ecific	values	in the	Ma	aximum: 0,00853381		Maximun	n: 0,001	-			
colum	11		Mir	nimum: -0,00595047	Minimum: -0,001						
COluli	111		Co	iunt: 33		Count:	3				
			2000	and a second		1					
			0, 0,	,00272876 ,0061568	-						
			0) 0,	,00272876 ,0061568	4						
Dsc: RES: Tra	nsient S-E Tens	or Pair	0,	,00272876 ,0061568		💌 On set	NRES_CRC180				
Dsc: RES: Tra	nsient S-E Tens	or Pair	0,	,00272876 ,0061568		Dn set: Time scale:	NRES_CRC180				
Dsc: RES: Tra	nsient S-E Tens	or Pair	o, o, sy	,00272876 ,0061568 SZ	SYZ	Dn set: Time scale:	NRES_CRC180 TRES_CRC180 SXY				
Dsc: RES: Tra Position CNTR	nsient S-E Tens Time 202	or Pair SX 0,000226809	0, 0, 0, 0, 0, 40 260	,00272876 ,0061568 SZ 13 145,069	SYZ -103,806	On set: Time scale: SXZ -0,218977	NRES_CRC180 TRES_CRC180 SXY 0,0284826	EX -0.00			
Dsc: RES: Tra Position CNTR CNTR	nsient S-E Tens Time 202 218	or Pair SX 0,000226809 -0,000245426	0, 0, 0, 0, 0,40260 0,66	00272876 0061568 SZ 03 145,069	SYZ -103,806	Con set: Time scale: SXZ -0,218977 -1,01535	NRES_CRC180 TRES_CRC180 SXY 0,0284826 -0,0106972	EX -0,0(
Dsc: RES: Tra Position CNTR CNTR CNTR CNTR	nsient S-E Tens Time 202 218 257	or Pair SX 0,000226809 -0,000245426 -0,000337895	0, 0, 0, 0,40260 0,66 -0,05	00272876 0061568 33 145,069 Resultin	SYZ -103,806 .g set	On set: Time scale: SXZ -0,218977 -1,01535 -0,0231032	NRES_CRC180 TRES_CRC180 SXY 0,0284826 -0,0106972 -0,0131816	EX -0,0(-0,00			
Dsc: RES: Tra Position CNTR CNTR CNTR CNTR	nsient S-E Tens Time 202 218 257	or Pair SX 0,000226809 -0,000245426 -0,000337895	0, 0, 0, 0, 0, 66 -0,05	00272876 0061568 13 145,069 Resultin	syz 103,806 g set	Con set: Time scale: SXZ -0,218977 -1,01535 -0,0231032	NRES_CRC180 TRES_CRC180 SXY 0,0284826 -0,0106972 -0,0131816	EX -0,00 0,00			

View / Edit Window – Type II

no command Back or Undo, every Save is final

- not Saved changes can be returned back by the Skip
- Changing the ID-name to a new one and save is not equal to rename but to a copy to a new item

individual items

edition of each item in the data_vector (load regimes here) has to be finished by *Save* if you want to continue to another one

LR_REC150 LR_REC130		ID-name:	LR	_RBL150					
LR_REC120 LR_CR5170 LR_EP5180 LR_EP5150 LR_EP5150 LR_EP5130 LR_XCR170 LR_XCR170 LR_SGL180	Description: Load Reginer C Load b C Load f	ion: egime Type ad by Math Formula O Load Spectrum ad from File O Stress-Strain History Result F ads Set Interactively O Sequence of Result Files				esult File			
LR_SGL150 LR_SGL140		5		Result File	Load History	Load	l Ratio		
LR_RBL180			1	TENS	LS_RBL150S	1			
LR RBL150	Rename		2	TORS	LS_RBL150T	1			
LR_RBL130	Reorder		3						
LR_L160	New		4			-			
LR_L150 LR_PRO180 LR_PRO160	Copy Remove					Help	<u>S</u> ave	New	Remo
LR_PRO150	-						Skip	Сору	Clos

View / Edit Window – Type II

- Popup-menu enabled only for Edit mode
- Some items in the Command menu enabled also in View mode
- Reorder: Currently enabled only for Load Regimes and Setups of Analyses

View / Edit Window – Type II

Apply to set button

 Enables correction of FE-model properties, if they were inadequaely imported to PragTic

🔁 Elem	ent Groups - Edit				-D×				
1 2 3 5 7	ID-number: 1 Element type: NASTRAN / CHEXA Description:								
8	Option description	Range	Sense of chosen value	Value					
4	Integration network	<0-3>	Bubble function (<8 node>reduced shear v						
10	Location selection for stress output	<0-1>	Stresses at nodes	0					
100000	Integration scheme	<-10-10	> Reduced integration scheme	0					
	Structural / Fluid element flag	<0-1>	Structural element (SMECH; default)	0					
	Apply to set	ssignr spec	nent of a chosen pro ified set of e.g. nodes	perty	ew <u>R</u> emove				

Loads Description

Load Regime (LOAD_REG)

- a combination of all entities necessary for creation of local load histories
 - extern load history + FE-results file + knowledge of load applied to the FE-model
 - local load history in hte FE-result file = transient analysis

extern loads (Hooke)

- math formula
- load by data sequence
- load spectrum / rain-flow matrix
- transient analysis (no Hooke)
 - local load history read from FE-solver (ABAQUS)
 - In preparation: buildup of transient analysis from a sequence of FE-results

1AX		-						
AX_EN	ID-number:	TO	MAX					
AT_N	Description:	ele	mental stresses					
	Load Regir	me T	уре					
	C Load b	y Ma	ith Formula	C Load	Spectrum	n		
		rom F	=ile]	C Stres	s-Strain H	History R	esult File	
	C Loads	Set I	nteractively	C Sequ	ence of R	esult File	es	
	1	r -	In such that	li d'Unakama	It saw	Dalla	1000	
		-		Load History	Loau	Ratio		
		2	REDEN	LOAME	1			
		4 3			-			
		4					-	
		5	-				-	
		-					~	
					Late 1	Court	Marriel	Demail
					Неір	Save	New	Remov
						121-253	1.00	194

Loading

Linear FEA

- The individual load channels can be combined by simple superposition
- If the resulting loads pass over the yield limit, some kind of reduction to elastic-plastic value can be necessary
- Non-linear FEA
 - No superposition allowed
 - More challenging way due to necessity to include all the interacting channels and contacts into one model

Load History Definition

- Transient analysis local loads over the structure
- History of the acting load must be in a known relation to the load acting on the FE-model
 - real record (time force)
 - mathematical formulation
 - load spectrum (upper force lower force occurence)
 - load spectra as e.g. required by standards
 - rain-flow matrices

Load Input to PragTic

- Use of the **Import** function from the main menu
- Creation in PragTic (New command at the right-hand click menu opened on Time Scales, Load Sequencies and Load Spectra)
 - direct editing
 - use of Copy and Paste function

 (Ctrl+V) at the void cells of Edit window
 be sure that the size of the clipboard and the edit window
 coincide

File Material Kun Tools Helt		
 FE Model Geometry Nodes Elements FE Properties FEA Sets FEA Results Isolated Points Description Sets Results Properties COORDSYS LOCPROP MATERIAL Fatigue Analysis Load Sequencies Load Sequencies Load Regimes Calculation Methods Fatigue Damage 	WARNING: No removal - some another entity is dependant - Invalid arguments Node 2744 position CNTR: SIG_X: 1151,606 TAU_YZ: 37,66647 SIG_Y: 759,2522 TAU_XZ: -19,2352 SIG_Z: 188,8209 TAU_XY: -379,9677 1st principal stress: 1384,13748080184 2nd principal stress: 1384,201551838 3rd principal stress: 186,29841764632 Various data_vectors used for load definitions	

Load Scaling

Optimum setup:

FEA solution for unit load (e.g. 1 N, 1 kN, etc. – something with what can be easily worked further)

Load Regimes

LR AMP LR S AMP

- FEA result input for a desired load
 - e.g. the load
 equal to the
 load
 amplitude
 - not so handy for further modifications

Setup of Calc

Check before any calculation that the M.Ps. are defined for all materials included into the selected calculation scope

1. Selection of the method affects the content of combo boxes below as well as of all the tables PCF_W WB93MSKPL Influenc WB93KPL Influence 2. Selection of this

partial procedures affects the content o the tables

Selection of the	OCIE					1	
thod affects the		s of coeffs - C. SOCCT 3.2 & C. SOC	CS 0.7				
ntent of combo		Socie		Material: 0			
xes below as we	ell	Combined Socies's model	M	Material parameters		Value	
of all the tables	4	No	•	E.		210000	
IPCF W	luence:	As in original formula		NU		0,3	
WB93MSKPL Infl WB93KPL L	uence of stress gradient:	No		SIG_YLD		334,5	
IND 30KPL INTH						1009,2	
Selection of this		No		FPS F		0 922	
tial procedures	o; mperature:			SAMMA_F EXP_B EXP_C		1,597	
	vive probability:					-0,0927	
ects the content	t of	Palmaren-Miner	-0,659				
e tables		Devember .		C_SOCCT		2,5	
Sear	rhed planes <0~85, 1~dlobe.	2~random, 3~N only>		c_soccs		0,5	
Num	per of scanned planes	- (and and a first of a start)	180	ā		76923	
Shea	r component description <0~1	MCCM, 1~LCM, 2~by econar line, 34	-M 2				
Oply the mater	ial		1				
Only the mater	121	V	alue 🔺				
parameters nec	essary for	1	E-20				
selected setup of the		1	E-8				
		0	,5 🗾				
method are sho	own			Help	<u>S</u> ave	New	<u>R</u> emove
					Skip	⊆ору	Close
							1.

Transient Analysis

- Local load history built for cases, where the linear Hooke's law is not valid
- Two ways of creation
 - Iocal load history recorded for each node/element (FE-postprocessor builds the transient analysis)
 - set of results at different times chained together (fatigue solver builds the transient analysis)

Transient S-E Tensor Pairs (SET_Pair item) are placed to the **Results** / **FEA Results** groups and not

to Loads

Material Parameters (MATERIAL)

- Even a complete import of the FE-model e.g. from *.nas file provides only several static parameters
- Material definition common also with Isolated Points – it should precede before their definition
- Material parameters definition opened from:
 - 1. **MATERIAL** ID-name of data_vector
 - 2. Material item of the main menu
- Some material parameters preset in dependency on the chosen material group
- Note: Use of a decimal comma or dot depends on your local Windows setup

🐵 Material Database - Edit				
234	ID-number: 2 Material: she Group: bec Parameter E NU SIG_YLD	eets - Klim ific tempe Valu 703 0,33 345	ian 2024T: rature trea ie 00	3 (sheets)
Material Database: Higher strength weldable structural ca Heat treatable steel Case hardening steel Nitration steel Higher strength cast steel Higher strength cast steel White cast iron Nodular cast iron Aluminum uncurch allow	SIG_ULT SIG_F TAU_F EPS_F GAMMA_F EXP_B EXP_C TENS0 TENS-1	459 104 602, 1,75 3,03 -0,11 -0,93 149, 111, 74,1	0 4 ,75 5 14 27 ,6 ,1	
Fi06 - 76S-T61 aluminum alloy (ID Fi07 - 76S-T61 aluminum alloy (ID Fi08 - 76S-T61 aluminum alloy (ID Fi08 - 76S-T61 aluminum alloy (ID F· Aluminum cast alloy Ani	Help S	ave	<u>N</u> ew	
E - Elastic modulus			Zehl	

Eventual Setup of Material Parameters

Use the Methods dialogue

- You are not defining the setup of methods, i.e. Methods can be opened even in the otherwise passive View mode
- You can see much more efficiently, which material parameters you really need in order to get to results
- Any your change of a table
 cell starts a dialogue asking
 whether to save your input
 into the Material data_vector

ided va	lues of coeffs - C_SOCCT 3.2 & C_SOCCS 0.7			
	Socie	~	Material: 0	•
	Combined Socies's model	~	Material parameters	Value
	No	<	E	210000
	As in original formula	<	NU	0,3
lient:	No	<	SIG_YLD	334,5
:	No	~	SIG_F	1009,2
ality:	No	1	TAU_F	582,7
	No	~	EPS_F	0,922
e:	No	-	GAMMA_F	1,597
babilit	Query on saving 🛛 🔤	<	EXP_B	-0,0927
	Save EPS_F=0,922 to the material "0"?	~	EXP_C	-0,659
	rameter		C_SOCCT	2,5
1~alc	Ano Ne		c_soccs	0,5
s.	180		G	76923
1~gic	180		G	76923

Setup of Calculation Methods (METHODS)

CRC SW WB EIC	DSS T 2 HLSEDER HLSEDERB	ID-number: EICHLSEDERB				
		Method:	(LESA) - not finished		Material: 1 - AlSi9 F	aluminum 🗾
		Decomposition:	Rain-flow with von M	ises (signed) reduction 📃 👱	Material parameters	Value
		Elasto-plasticity;	No		E	74000
		Mean stress influence:	No		NU	0,3
		Influence of stress gradient:	Hück (IABG)		SIG_ULT	220
		Influence of technology:	No		TENS-1	65
				<u>.</u>	W_F-1	12
operties of	Structure				NC_F-1	10000000
	ID-pumber:	6			R_AS	0
	ib-hamber,			•	NU_SG_E	0,3
	Char, dimension	icommon surrace	nfluence factors:	Parameter 1 1 0 Value 1E-20 0,5		
	Apply to set,	Help Save Skip	New Remove	0	Help Save	New Remove Copy Close

Properties of Structure (LOCPROP)

- The dialogue covers facts on the specimens that are included neither in the FE-model nor in material parameters description
 - Surface quality
 - Up to 3 technologies
 affecting the surface layer
 - Size effect
- Values in text fields override the selected items in comboboxes
- Activated for LESA method only

Properties of St	ructure					- 🗆 🛛
	ID-number: Description:	1 commo	on surface			_
	Roughness:	60	 microns	smoothed		•
	Chosen techno	ology:		User define	ed influence	e factors:
	case har	dened			[
	Char, dimensio	n: 15	circle	Di	ameter: 1	15
		ň	Help	Save	New	Remove
	Apply to set,.			Skip	Сору	Close

Coordinate Systems (COORDSYS)

New coordinate systems can be defined on basis of other previously defined coordinate systems

Used both for Isolated Points and the FE-model

Definition of a new item:

the values in the	Coordinate Systems	- Edit				
first column	1 2 [D-number:	1	Type: Cylindrical 💌	Defined in: 0	Leading axis: X Axis
(nodes, IPs)		CS definition	At nodes	Global CS: X Axis	Global CS: Y Axis	Global CS: Z Axis
		Origin		105	54	0
override the next		X Axis		1	0	0
overnee the next		Y Axis		0	1	0
positions		Z Axis		0	0	1.
3 rows only	A	pply to set (fo	or definition).		Help	Save New Remove
define the c.s.		Apply to set (I	for <u>o</u> utput)			Skip Copy Close

Coordinate Systems (COORDSYS)

- Thanks to Apply to set buttons the c.ss. can be applied to imported data additionally
- **Results, Loads, Node descriptions** can be transformed in the View mode to another c.ss.
- Unsolved yet:
 - The results imported to PragTic could be printout in another c.s.
 - A further data_vector descriptor marking the related c.s. has to be implemented in some next PragTic version
 - The results on shell elements can be defined in their native coordinate systems (i.e. cs intrinsic to every particular element). Note that
 - it should not affect the fatigue calculations
 - but it affects transformations between individual c.ss.

Setups of Analyses (ANA_SETUP)

Specifies the focus of the calculation: where (localities)

Each setup consists of:

- at least one item from load regimes
- at least one item from methods
- at least one set of nodes, elements or isolated points
- Calculations loops
 - for each load regime
 - at each point
 - for each method

Note the preselection of the calculation scope by its localization. If there are e.g. only load regimes defined at element centroids, this choice is selected by PragTic automatically.

Save

• on which data (load regimes)

by which method (methods)

Setups of Analyses (ANA_SETUP)

Replaces the common **Run** window in PragTic v.0.2betaH

👼 Analysis Setup		×
LEMPP BAIER BAIER SHORT	ID-name: BAIER_SHOR Description: Localize calculation to Load Regimes Methods On Is. Points	
Introduced in order to quicken repeated starts of fatigue analyses in various modifications	In database Selected for calculation C Nodes LEM01 C Nodes of elements LEM03 C Whole elements LEM07 LEM08 LEM07 BAI01 BAI05 BAI03 BAI04 BAI04 BAI05 BAI05 BAI06 BAI07 BAI08 BAI08 BAI09 BAI01 BAI02 BAI01 BAI03 BAI01 BAI03 BAI02 BAI03 BAI03 BAI09 BAI01 BAI02 BAI03 BAI04	5
	BAIUS BAIUS DAInc BAIUS BAIUS <t< th=""><th></th></t<>	

Results of Fatigue Calculation

- Spreadsheet summary of damage and calculation related variables
- Graphical interpretation of results:
 - import back to the original FE-postprocessor
 - export of fatigue results into a FEMAP neutral file (*.neu)
 - export to a batch file that can be imported to Ansys

PragTic's Help

- freely downloadable
- created as a context help
- *.chm version
 - common context manual in Windows
 - started from the PragTic's interface (Help buttons?, Alt+H, F1 key)
 - HELP command at the command line
- *.html version
 - either for download or accessed via Internet (www.pragtic.com)
 - content coincident to the *.chm version
 - does not have Index, thus any search without knowing the structure is problematic

😫 PragTic Manual

lew Features from the Last Meeting

Rain-flow

- Accessible in the Tools section to be run without real fatigue calculation
- RF matrix can be shown
- Material Database
- Command Line