

FABER Project

What It Offers to Academic Sector

Jan Papuga

jan.papuga@fs.cvut.cz

FABER

FAtigue BEnchmark Repository

Benchmark

Benchmarking is used to measure performance of evaluated prediction methods using a specific indicator (relative error between predicted and experimental fatigue lives) resulting in a metric of performance that is then compared to others.

jan.papuga@fs.cvut.cz

What FABER offers to Academia

 Benchmarks (sets of verified experimental data) to evaluate and improve existing or newly developed fatigue procedures

- Scope: Assembled in a scope your faculty would never be able to reach
- Credibility: Agreed on by an international community of fatigue researchers
- **Relevancy:** Free of ballast or harmful items, which could damage the output quality

Why is your input relevant also to engineering

 The user of a typical commercial fatigue solver is the only person responsible for obtained results

WARRANTY DENIAL

- Typical clause in End Users License Agreement signed during SW purchase
- Removes any responsibility for obtained results from the SW developer
- Necessary due to the need to treat the user's bad practice
- It anyhow pardons also any shortcomings in SW developing
- If no further responsibility is asked from SW developers, all benchmarking of the software within company's common practice should be covered by it

Warranty denial vs Advertisement

 "MSC Fatigue enables durability engineers to quickly and accurately predict how long products will last under any combination of time-dependent or frequency-dependent loading conditions."

MSCsoftware.com (2018). MSC Fatigue: FE Based Durability Solution. [online] Available at: http://www.mscsoftware.com/product/msc-fatigue [Accessed August 30, 2018]

"Do I need to be a fatigue expert?"

No, you can leave that to us. There are factors which cannot be ignored if results are to be trusted. However, because fe-safe is technically advanced, it is configured to take into account many variables which will affect the accuracy of your results automatically."

3ds.com. (2018). FE-SAFE - SIMULIATM 3D Software - Dassault Systèmes®.
[online] Available at: https://www.3ds.com/productsservices/simulia/products/fe-safe/ [Accessed August 30, 2018].

Responsibility? Multiaxial fatigue solutions:

S	Commercial				Non-o	commercial	Test	Test set 407 exps.		
solver	Methods	Fe-Safe MSC.Fatigue	Femtat FEARCE nCode DesionLife	LMS Virtual. Lab Durability WinLife	eFatigue Code Aster	PragTic FatLab	Mean relative	error [70] St. deviation of relative error [%]	[
ne	Dang Van (1973) Findley (1957)	ХХ	X X	X X X	X X X	X X X	-0.1 8.7	12.2 15.2		
<u>l</u> D	McDiarmid (1991)	х	X X		X	X X	-6.2 -4 3	2 12.0		
, A	Matake (1977)	\mathcal{H}			X	X	6.4	15.8		
•	Other solution	1			X				_	
	Method:	C&S Crossland	Dang Van Findley	Fogue Goncalves	L&M L&Z	Matake McDiarmid	Papadopoulo Papuga PC	Robert Sines Susmel		
	Year of publication:	2001 1956	1973 1957	1987 2005	2005 1989	1977 1991	1994 2008	1988 1959 2001		
enchmarks	Ref. Tear Sets Items [8] 1997 4 43 [9] 1999 1 2 [10] 2000 ? 179 [11] 2001 3 30 [12] 2002 52 447 [13] 2003 3 38 [14] 2005 4 41 [15] 2006 1 8 [16] 2007 16 125 [17] 2008 4 43	X X A X X X	X X X X X X	А	A	X X X X X X	X X X X X X X	X	•	
nic b	$ \begin{bmatrix} 18 \\ 2009 & 40 & 320 \\ 19 \\ 2010 & 13 & 131 \\ 20 \\ 2010 & 6 & 66 \\ \hline [4] & 2011 & 49 & 407 \\ 1011 & 40 & 407 \\ 1011$	X X X X* X*	X X* X*	X* X*	X* X*	X X* X* X* X*	X X X X* A*	X X X* X* X*	-	
cader	[21] 2011 8 52 [22] 2013 8 62 [23] 2014 2 4 [24] 2014 18 58 [25] 2014 3 2	A X* X X A X	X* X* X X X	X* X* X	X^*	X* X*	X* X X	$\begin{array}{ccc} X^{\star} & X^{\star} \\ & X \\ & X \end{array}$		
<	[26] 2015 25 269 [27] 2015 7 26		Х			х	х	X	_	
	Number of occurrences Mean relative error [%] St. dev. of rel. error [%]	2 13 -4.8 -8.0 8.7 11.3	7 7 -0.1 8.7 12.2 15.2	2 3 2.4 0.7 10.8 10.9	1 3 -1.2 0.0 12.1 8.8	7 7 6.4 -6.2 15.8 12.0	14 1 -4.6 -0.5 10.3 6.1	2 7 2 4.7 -4.3 1.7 9.9 17.9 8.4	7 	

The orange rectangle below shows the summary of relative errors in fatigue strength estimation on a biggest ever published benchmark set (the error should be zero for perfect results)

- It proves that most of tested prediction methods yield better results than any of those implemented in commercial fatigue solvers
- Why their use is not abandoned?

See more: https://c.csm.cz/files/Bulletin_0 1_2019.pdf, pp. 18-42

Benchmarking of commercial software?

• Example:

"Except as specifically permitted in this Agreement, Customer agrees not to: (a) ... (e) provide, disclose or transmit any results of tests or benchmarks related to any DS Offering to any third party..." DASSAULT SYSTEMES. (2018). Customer License and online service agreement. [v. 11.2], DASSAULT SYSTEMES.

- This means, that every customer is left alone, without any legal chance to understand better the offer on the market
- This is acceptable (though costly) only for large companies with own experimental base usable for own benchmarking
- There is no reason, why fatigue solver developers should change anything, unless the users start to claim the change

Market doesn't favor the best but the cheapest

- 1. Engineering companies wanted to cut their costs for fatigue analyses.
- 2. They started to buy fatigue solvers, which can be developed cheaply, without the need to support own research.
- 3. The money paid for fatigue solvers enabled developers to develop solvers, but there was little real research underlying them.
- 4. Solver developers became aware that they cannot substitute research, so they avoided providing a warranty.
- Academia lost interest in what was implemented in fatigue solvers (no more money, no research).
- Nobody has been taking care of the core methods in fatigue solvers. They are generally considered or assumed to be good enough (whatever this means).

Why academia should interfere?

- Social reason: It left the field of industrial applications of its ideas open and undefended
- Rights: Its right to evaluate existing solutions is compromised (benchmarking forbidden)
- Offer: The general access to the final experimental database and benchmarks
 - Extremely simplifies access to data for testing new ideas
 - Is more democratic and supports weaker institutions and individuals

FABER Project - Goals I

To establish benchmark sets for testing quality of High-Cycle
 Fatigue prediction methods in these categories:

- These categories
 - Affect the basic prediction quality
 - Conditions of dedicated experiments are still simple enough to monitor
 - Prediction reasonably simple to perform automated large-scale evaluation

FABER Project - Goals II

• **Prepare basis for future benchmarks** on compound problems:

- Fatigue processes in these domains are more complicated than those in Goals I, various issues interact
- Within FABER, only these activities targeted:
 - Monitoring of optimum data sources
 - Applicable experiments to be defined
 - Definition of experimental data record

How to reach those goals

- To disperse the demanding task to more cooperating people/institutions
- To create a broad network
- Some momentum to start with it sought:
 - COST Projects
 - First project from September 2019 call
 - 4-years project planned
 - Failed while attaining 40 points from 50
 - No fatigue solver developer was invited in the first round

COST Actions

- Focused on European countries and immediate neighbors, but no problem with getting worldwide
- If funded, the funds can be used only for costs of:
 - Meetings
 - Organizing workshops, training schools
 - Short-term scientific missions
 - Dissemination
- There are no funds at all for research or experimenting itself

Concept of implementation

- The current consortium partners dispose of three different database systems to preserve experimental fatigue data – they should be compared, and either new solution proposed and built, or some of those solutions adopted
- Format of an experimental setup record should be checked and redefined, if necessary, for all focused domains in Goals I section
- Participants select their focused areas, look for potential data sources and aggregate data from them. Systems for evaluating data quality and for data inputs checking is developed
- Individual workgroups discuss those rules and decide on selecting of evaluated data sets or their removing
- Benchmark established in Goal I categories and they are tested on available prediction methods, results published
- FABEST Worldwide contest on best fatigue prediction in selected categories: experiments to feed the predictions to be run before the contest, those to show results after the call is closed, contest is monitored and results published

Funding

Database definition

Structure Internal and transfer formats Input / Output

Academia / Engineering

Database implementing

Programming / Debugging

Not covered yet

Data processing

Search for data items Their aggregation Their manipulation

Academia / Engineering

FABEST - Specimens

Design and manufacturing specimens for FABEST contest

Engineering companies

COST Action

Meetings Organizing workshops, training schools Short-term scientific missions Dissemination

Covered by COST

FABEST - Experiments

Running experiments Evaluating results

Academia / Engineering

What FABER needs from academia

- Elaboration of the experimental database
 - Its design and development
 - Processing accessible experimental data and their input into the database
 - It can be replaced by alternative means
 - Manufacturing samples for FABEST contest
 - Prizes for FABEST winners
 - Running the experiments
 - Webinars, trainings for other partners on fatigue related topics
- Inviting other interested partners to FABER
- Reporting about FABER goals and activities in journals, on conferences
- Checking on own SW, that the final benchmarks can be processed
- Proposals on FABEST contest topics